レビー 日本 レビー 日本 していた し し していた し していた し していた

石墨炉原子吸收 分析食用油中痕量 有害金属元素

摘要

石墨炉原子吸收法因其具有选择性好、灵 敏度高、使用简易、抗基体干扰能力强的特 点,已被广泛应用于食品中痕量金属元素 检测中。食用油中金属元素含量均非常低,

但仍能检测到像砷、铅、镉、铬、硒这些金属元素,众所周知这些元素的对于消费 者的健康有害的。这些有毒元素通常来源于使用过程或生产来源的污染,能够使 用GFAAS或ICP-MS进行检测。如果只需要检测少量元素,那么GFAAS是首选的方 法。它更容易上手、设置简便、比ICP-MS更为简单。同时GFAAS的初期投入资金 更少、使用和维护成本也更低。食用油进入仪器测试前通常需要进行样品预处理, 以消除有机基体干扰。与直接进样法相比,湿法、干法或微波消解法、有机溶剂稀 释法或萃取法都费时费力,并对操作人员需要进行大量培训才能完成。

本文报道了无需消解、石墨炉原子吸收GFAAS直接进样分 析食用油的方法。此方法的优点在于取样少、样品直接进 样、灵敏度高且分析速度快。在此应用中采用GFAAS对食 用油中As、Pb和Cd的含量进行了测定。分别对灰化和原子 化温度、检出限、QC检查和加标回收率进行优化,建立一 套快速准确的分析方法。

实验条件

仪器

使用仪器为PinAAcle 900T原子吸收光谱仪, 配套AS 900石墨炉自动进样器, 由Microsoft[®] Windows[®] 7操作 系统下运行WinLab32™ AA软件控制(PerkinElmer, Inc., Shelton, CT,USA)。高效的实时双光束光学系统和固态检

Figure 1. PerkinElmer PinAAcle 900T atomic absorption spectrophotometer equipped with AS 900 graphite furnace autosampler.

表1. PinAAcle 900T测定食用油中有害金属元素分析条件

参数 As Pb Cd 波长 (nm) 193.70 283.31 228.80 狭缝 (nm) 0.7 0.7 0.7 灯类型 EDL EDL HCL 峰面积 峰面积 峰面积 信号处理 读数时间 (sec) 3 3 2 标准/样品体积(µL) 20 20 20 4 4 5 稀释液体积(µL) 基体改进剂 5 µg Pd + 0.5 µg Mg 5 µg Pd + 0.5 µg Mg 5 µg Pd + 0.5 µg Mg 基体改进剂体积(μL) 5 5 5 90 进样温度(℃) 90 90 取样速度(%) 40 40 40 线性过零点 线性过零点 线性过零点 校正方程式 标准浓度 (µg/L) 0, 20, 30, 40, 50 0, 20, 30, 40, 50 0, 0.5, 1.0, 1.5, 2.0 10 10 0.4 QC浓度 (µg/L) 10 10 0.5 自动加标浓度(µg/L)

测器使得PerkinElmer PinAAcle 900T原子吸收光谱仪具 有杰出的的信噪比。石墨炉纵向塞曼背景校正技术避免 了偏振器的使用,使光学系统光通量提高一倍。通过横向 加热(THGA)为整个石墨管长度方向上创造了均匀的温 度条件。最新的STPF(稳定温度平台石墨炉)分析技术和 THGA石墨管的优越性,克服了化学干扰的影响,实现更 快、更简单的直接校准。

分析条件见表1和石墨炉升温程序见表2。所有元素进样 温度为90°C。所有分析方法均使用标准(不带端盖)涂层 THGA石墨管(货号B3000641)。为降低化样品污染的可 能性,自动进样器样品杯均使用20%硝酸浸泡过夜,并 使用前用去离子水冲洗。每个分析物使用异丙醇配置, 在样品分析前先进行五点标准曲线校正(4个标准和1个 空白)。最新的STPF(稳定温度平台石墨炉)分析技术和 THGA石墨管的优越性,克服了化学干扰的影响,实现更 快、更简单的直接校准。

表2. PinAAcle 900T测定食用油中有害金属元素石墨炉升温程序

参数	As		РЬ			Cd			
石墨炉程序	温度 (℃)	爬坡时间(s)	保留时间 (s)	温度 (℃)	爬坡时间(s)	保留时间 (s)	温度 (℃)	爬坡时间(s)	保留时间 (s)
干燥1	110	1	20	110	1	20	110	1	20
干燥2	150	10	10	150	10	10	150	10	10
干燥3	450	10	20	450	10	20	450	10	20
灰化	1100	10	20	900	10	20	550	10	20
原子化	2300	0	3	1900	0	3	1800	0	2
清洗	2500	1	5	2500	1	5	2500	1	5

BOC = 2 s for all samples

标准和样品配置

使用PerkinElmer单元素标准溶液(货号.As: N9300180; Pb: N9300175; Cd: N9300176)配置储备标准溶液和质量控制标准溶液。所有标准均按体积比使用IPA(VWR, Normapur试剂)进行稀释。

所有元素均使用混合化学改进剂1000 mg/L Pd和100 mg/L Mg。配置方法:称0.1430 g 乙酰丙酮化钯(II) (Aldrich,99%,MW=304.62)、移取1mL Mg油标准 (Conostan, 5000 μg/mL),用二甲苯(Panreac,试剂 级)稀释至50mL。

从当地超市购买5种不同食用油样品(棕榈油、芝麻油、葵花籽油、大豆油、米糠油),不经过任何前处理,所有样品直接在聚丙烯瓶(货号B0193234)中用异丙醇稀释20倍(体积比)。

结果和讨论

所有元素标准曲线相关系数r²≥0.997。相比标准加入法 来说,油样分析直接校准具有很多优点。直接校准法的 结果减少了操作误差、具有更低的分析成本、并且分析 时间比标准加入法或基体匹配法更短。

图3中给出了标准(红色)、QC检查(绿色)和油样(不同颜色)的叠加谱图。虽然使用前面列出的分析条件, 有些元素的谱峰出峰时间有所差异,但以峰面积计算方 式测量仍能得到精确的结果。

石墨炉直接进样分析食用油结果见表3中。所有油样 中Pb和Cd的浓度低于检出限。大豆油中As含量为4.28 μg/L.其他样品中含量均低于检出限。

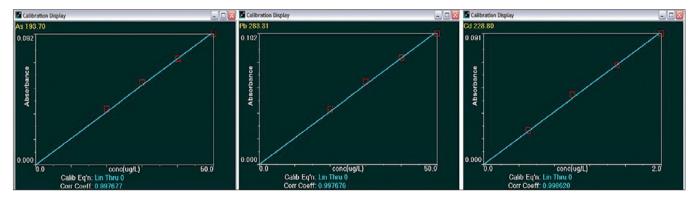


图2. 食用油直接进样As、Pb、Cd标准曲线

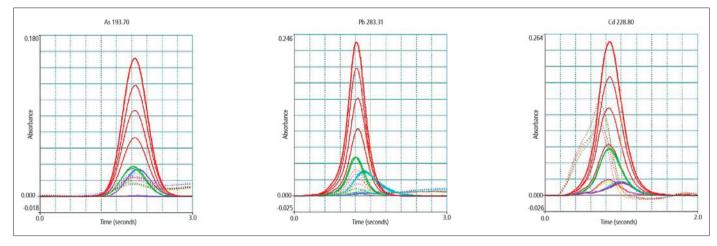


图3. PinAAcle 900T直接校准分析食用油中As、Pb、Cd,标准(红色)、QC检查(绿色)和油样(不同颜色)的叠加谱图。 实线为扣除背景后分析信号峰(AA-BG);虚线为背景峰(BG).

表3. GFAAS测定食用油分析结果					
样品	As	Pb	Cd		
棕榈油 (µg/L)	< MDL	< MDL	< MDL		
芝麻油 (μg/L)	< MDL	< MDL	< MDL		
_葵花籽油 (μg/L)	< MDL	< MDL	< MDL		
大豆油 (µg/L)	4.28	< MDL	< MDL		
米糠油 (µg/L)	< MDL	< MDL	< MDL		

方法检出限以3倍 (Cd和As) 或5倍 (Pb) IPA空白的7次测量 SD计算。考虑样品稀释倍数为20倍, 实际计算结果乘以20估 算方法检出限, 单位为标准/样品的单位。表4列出了PinAAcle 900T分析低含量复杂食用油基体的方法检出限结果。

表4. PinAAcle 900T分析食用油方法检出限

分析	As	Pb	Cd
MDL ($\mu g/L$)	3.4	3.0	0.42

本方法目的在于开发一种简单、直接、无需样品前处理使用 石墨炉直接定量分析食用油中多种有害金属元素的方法。 通过QC检查和加标回收率检查来验证方法的有效性。表5 显示,QC样品表现出良好的回收率98-110%,在可接受限 度范围内。此外,单个样品加标As、Pb、Cd加标浓度分别为

珀金埃尔默企业管理(上海)有限公司 地址:上海张江高科技园区张衡路1670号 邮编:201203 电话:021-60645888 传真:021-60645999 www.perkinelmer.com.cn 10 μg/L, 10 μg/L 和0.5 μg/L, 其回收率范围在93-112% (表5), 符合±15%范畴。

表5. GFAAS直接分析食用油QC检查和加标样品回收率

		回收率%	
分析物	As	Pb	Cd
QC1	104	110	107
QC2	98.4	110	109
QC3	104	109	109
加标回收率一棕榈油	93.9	106	109
加标回收率一芝麻油	94.8	93.2	112
加标回收率一葵花籽油	98.8	93.5	108

结论

本文开发了直接进样定量分析食用油中有害元素的方法。THGA石墨管的设计减少了样品处理的时间,提高了样品的检测效率和准确度。独有的光学系统、固态检测器(短波长光传播效率更高)、THGA、STPF技术和纵向塞曼扣背景使得PinAAcle 900T光谱仪在分析类似食用油这样的复杂基体样品应用中,获得了更好的准确度、更快和更稳定的分析结果。PinAAcle 900Z(单纵向塞曼石墨炉)同样适用于此应用。

要获取全球办事处的完整列表,请访问http:// www.perkinelmer.com.cn/AboutUs/ContactUs/ContactUs

版权所有 ©2014, PerkinElmer, Inc. 保留所有权利。PerkinElmer[®] 是PerkinElmer, Inc. 的注册商标。其它所有商标均为其各自持有者或所有者的财产。